
s

 GODDARD SPACE FLIGHT CENTER

Operating System Abstraction Layer (OSAL)

Configuration Guide
582-2007-00

October 23, 2007 (Version 1.0)

 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

 2

Authors:

___ ________________
A. Cudmore/Flight Software Engineer/Code 582 Date

___ ________________
N. Yanchik/Flight Software Engineer/Code 582 Date

Approvals:

___ ________________
Elaine Shell/ 582 Branch Head Date

 3

Acknowledgements

Revision History

Revision
Number

Release
Date

Changes to Prior Revision Approval

1.0 10/17/07 Initial Release. A. Cudmore

 4

Table Of Contents
1 INTRODUCTION .. 5

1.1 Scope .. 5
1.2 Background.. 5
1.3 Applicable Documents .. 5
1.4 Acronyms... 5
1.5 Glossary of Terms ... 5

2 HOW TO CONFIGURE, BUILD, AND RUN THE OSAL... 7
2.1 Setup the Build Environment ... 7

2.1.1 Setup the OSAL Source Distribution.. 7
2.1.2 Create System Environment Variable(s) .. 8

2.2 Configure the Build Directory for the OSAL application .. 9
2.3 Configure the ‘build’ Directory.. 10

2.3.1 Define the CPU, Operating System, and Processor Board.. 10
2.3.2 Configure the OSAL Parameter File .. 10

2.4 Configure one or more OSAL Applications.. 12
2.4.1 Configure a sample application in the build directory... 12
2.4.2 Configure the application’s main entry point... 12

2.5 Build the OSAL core and Applications ... 12
2.6 Load and Run the OSAL Applications .. 14

2.6.1 Load the OSAL Application Executable on the Target... 14
2.6.2 Setup the Target File Systems... 14
2.6.3 Start the OSAL Application on the Target ... 15

TARGET SPECIFIC INSTRUCTIONS.. 16
2.7 Generic PPC / vxWorks 6.4 Platform: ... 16

2.7.1 OSAL Configuration for the Generic PPC / VxWorks 6.4 ... 16
2.7.2 File System Mappings on the MCP750 PPC Board .. 16
2.7.3 How to run the OSAL Applications on the MCP750 or RAD750.. 16

2.8 Axiom M5235 BCC / RTEMS 4.7:.. 18
2.8.1 OSAL Configuration for the Axiom M5235 BCC / RTEMS 4.7 ... 18
2.8.2 File System Mappings on the Axiom M5235 BCC / RTEMS 4.7.. 18
2.8.3 How to run the OSAL Applications on the Axiom M5235 BCC with RTEMS 4.7 18

2.9 Macintosh / OS X Platform: ... 20
2.9.1 OSAL Configuration for the Macintosh / OS X Platform... 20
2.9.2 How to Run the cFE on the Macintosh / OS X Platform .. 20

2.10 PC / Linux Platform .. 21
2.10.1 OSAL Configuration for the PC / Linux Platform .. 21
2.10.2 How to Run the cFE on the PC / Linux Platform .. 21

2.11 PC / Cygwin-Windows Platform.. 22
2.11.1 OSAL Configuration for the PC / Cygwin-Windows Platform.. 22
2.11.2 How to Run the cFE on the PC / Cygwin Platform ... 22

 5

1 Introduction
1.1 Scope

The purpose of this document is to provide guidelines and conventions for the configuration and
deployment of the Operating System Abstraction Layer (OSAL) to a desired platform or platforms.

1.2 Background

The goal OS Abstraction Layer is to promote the creation of portable and reusable real time embedded
system software. Given the necessary OS abstraction layer implementations, the same embedded software
should compile and run on a number of platforms ranging from spacecraft computer systems to desktop
PCs.

1.3 Applicable Documents

Document ID Document Title

1.4 Acronyms

Acronym Description
OS Operating System
API Application Programming Interface
CM Configuration Management
CPU Central Processing Unit
EEPROM Electrically Erasable Programmable Read-Only Memory
HW, H/W Hardware
RAM Random-Access Memory
SW, S/W Software
TBD To Be Determined

1.5 Glossary of Terms

The following table defines the terms used throughout this document. These terms are identified as proper
nouns and are capitalized.

Term Definition
Application
(APP)

A generic term for a computer program in a desktop or embedded system. An
Application is generally not part of the operating system.

Application
Programmer’s
Interface (API)

A set of routines, protocols, and tools for building software applications

Board Support
Package (BSP)

A collection of user-provided facilities that interface an OS and the cFE with a
specific hardware platform. The BSP is responsible for hardware initialization.

Core Flight
Executive (cFE) A runtime environment and a set of services for hosting FSW Applications

 6

Cyclic
Redundancy
Check

A polynomial based method for checking that a data set has remained unchanged
from one time period to another.

Developer Anyone who is coding a software Application.
Hardware
Platform The target hardware that hosts the an Operating System and Applications.

Interface Control
Document

A document that describes the software interface, in detail, to another piece of
software or hardware.

I/O Data

Any data being written to and read from an I/O port. No structure is placed on the
data and no distinction as to the type of I/O device. I/O data is defined separately
from memory data because it has a separate API and it’s an optional interface of
the cFE.

Log A collection of data that an application stores that provides information to
diagnose and debug FSW problems.

Memory Data Any data being written to and read from memory. No structure is placed on the
data and no distinction as to the type of memory is made.

MMU

Memory Management Unit. A piece of hardware that manages virtual memory
systems. It automatically translates addresses into physical addresses so that an
application can be linked with one set of addresses but actually reside in a
different part of memory.

Network A connection between subsystems used for communication purposes.
Platform See “Hardware Platform” above.

User Anyone who interacts with the a Software Application or system in its operational
state. A user can be a developer, a tester, , an operator, or a maintainer.

 7

2 How to Configure, Build, and Run the OSAL

The OSAL distribution includes a complete development environment with support for a number of
processors and operating systems. The OSAL development environment has been designed to isolate the
portable OS source code from the OSAL applications, configuration parameters, and build products. The
development environment is an example of how to configure and build portable software using the OSAL
code, but it is by no means a requirement to use the OSAL. The included platforms for the OSAL can be
used as starting points for other boards and CPUs.

The following sections provide instructions on how to:

• Setup the build environment
• Configure the build directory for an OSAL application
• Configure a OSAL Application
• Build the OSAL Application
• Load the OSAL Application on to the target platform
• Run the OSAL Application on the target platform

2.1 Setup the Build Environment

This section details the steps needed to setup the OSAL source distribution and prepare the host
development environment to build the OSAL.

2.1.1 Setup the OSAL Source Distribution

Get a copy of the OSAL source distribution directory on your build machine. The source distribution has
the following directories:

OSAL source distribution directories
Directory Description
osal The top level OSAL source distribution directory. OSAL version 2.10 is

being used as an example.
osal/src The src directory contains all OSAL source and make rules.
osal/src/apps The apps directory contains the sample and test applications for the osal.
osal/src/arch The arch directory contains the architecture (processor) specific code for the

OSAL as well as the BSP (Board Support Package) code to make the OSAL
run on a particular platform. Everything in this directory is used to adapt the
OSAL and Applications to a particular hardware platform. This directory also
contains the startup code for the example programs. The included platforms
are generic enough that they may be easy to port to other platforms and
processor architectures. For example: The arch/coldfire/mcf5235/rtems board
support package was ported to an ARM processor running RTEMS with
minimal effort.

osal/src/inc The inc directory contains system wide include files that are used by the
OSAL on all platforms. Currently only the common-types.h file is in this
directory.

osal/src/make The make directory contains common makefiles for building the OSAL and
it’s applications.

osal/src/os The os directory is the heart of the OSAL, containing the implementation of
the OSAL for each supported operating system. There is a sub-directory for
each supported operating system in this directory. The OSAL include files are
also contained in this directory (src/os/inc).

 8

osal/build The build directory contains a framework for building an OSAL application.
The files in this directory allow easy customization and configuration for any
supported OS or platform for the OSAL. By changing a few variables in a
file, the OSAL examples and test can be built for any of the supported
platforms.

osal/doc The doc directory contains the documentation and release notes for the
OSAL.

The osal directory can go just about anywhere on a host development system.

Example directory structure locations
Host Operating
System

Example Directory Notes

Windows/Cygwin /home/osaluser/osal 1. Building in Cygwin requires the “bash”
command shell. Cygwin provides a virtual unix
style directory directory structure, so
“/home/osaluser/osal” might translate to
C:\cygwin\home\osaluser\osal.
2. Putting the cFE directory under a directory with
spaces is not recommended. i.e. (“My
Documents”)

Windows/vxWorks 6
Development Shell

C:\osalproject\osal 1. Building on Windows with the vxWorks 6.x
development tools requires using the “vxWorks
Development Shell”. The system will not build on
a standard Cygwin Shell, or a windows DOS
prompt.

Linux /home/osaluser/osal
Mac OS X /Users/osaluser/osal

2.1.2 Create System Environment Variable(s)

The OSAL development environment requires one system environment variable to be set in order to build
the example programs. The directory also contains a shell script “setvars.sh” to set the environment to the
current OSAL directory.

Environment Variables Needed by the cFE
Environment Variable Value (in Linux as an example) Notes
OSAL_SRC /home/osaluser/osal/src The location of the OS

Abstraction Layer source
code. This directory can be
moved anywhere as long as
the environment variable is
set accordingly.

Example Environment Variable for Different Development Hosts
Host Operating
System

Example Environment Variables Notes

Windows/Cygwin $ export OSAL_SRC=/home/osaluser/osal/src

1. The
Windows/Cygwin
environment variables
are “Bash” shell
variables, not Windows

 9

environment variables.
Windows/vxWorks 6
Development Shell

% set OSAL_SRC=C:/osalproject/osal/src

1. These environment
variables can be set in
the Windows control
panel under
system/environment
variables.
2. Note the forward
slash directory
separators in the DOS
environment variables.
Because the vxWorks
tools are half DOS and
half-Unix, they don’t
seem to like the DOS
style backslash.

Linux $ export OSAL_SRC=/home/osaluser/osal/src

These settings can be
set in the user’s
.bash_profile

Mac OS X $ export OSAL_SRC=/home/osaluser/osal/src

These settings can be
set in the user’s
.bash_profile

2.2 Configure the Build Directory for the OSAL application

The build directory is where the OSAL is configured and compiled for a particular processor, board, and
OS. The build directory is designed to hold the OSAL configuration for the selected platform. The core
directory is where the core OS code, bsp code, and hardware abstraction layer (hal) are built. They are left
in the core directory for for the applications to link against. The build directory can have multiple OSAL
applications to build for a particular platform. The OSAL distribution contains directories for example and
test applications. Multiple build directories can be used to configure the OSAL for different platforms in
the same environment, each with it’s own unique OSAL configuration.

 10

2.3 Configure the ‘build’ Directory

In order to build the OSAL for one of the supported platforms, the OSAL build directory must be properly
configured. This involves editing a couple of configuration files and setting up one or more sample
applications that use the OSAL API.

2.3.1 Define the CPU, Operating System, and Processor Board

In the build directory, edit the ‘osal-config.mak’ file and set the options for your target. The default
settings in the osal-config.mak are for running vxWorks6.4 on an generic PowerPC board.

osal-config.mak Settings
osal-config.mak variable Valid selections Notes
HWARCH x86, ppc, coldfire
PLATFORM genppc, pc, mac,

mcf5235

OS vxworks6, rtems, osx, linux 1. VxWorks 5.5
is no longer
supported.
2. use linux on
cygwin

BSP vxworks6.4, linux, osx, rtems Use linux on
cygwin

Note that not all combinations are valid. See the Platform Specific Section for more information on each
supported cFE target.

2.3.2 Configure the OSAL Parameter File

The file osconfig.h has configuration parameters for tailoring the OSAL parameters. Most parameters set
upper bounds on the number of OS objects that can be created. The OSAL keeps track of allocated OS
objects using fixed size tables.

OSAL configuration parameters
Parameter Description
OS_MAX_TASKS The maximum number of tasks that can be

created in the running OSAL application.
OS_MAX_QUEUES The maximum number of queues that can be

created in the running OSAL application.
OS_MAX_COUNT_SEMAPHORES The maximum number of counting semaphores

that can be created in the running OSAL
application.

OS_MAX_BIN_SEMAPHORES The maximum number of binary semaphores
that can be created in the running OSAL
application.

OS_MAX_MUTEXES The maximum number of mutexes that can be
created in the running OSAL application

OS_MAX_PATH_LEN The maximum length for an absolute path length
in the OSAL File API.

OS_MAX_API_NAME The maximum length for an individual file name
in the OSAL File API.

OS_BUFFER_SIZE The maximum size of a formatted text message

 11

for the OS_printf API.
OS_BUFFER_MSG_DEPTH The maximum number of messages buffered by

the OS_printf API.
OS_UTILITY_TASK_ON Turns on a utility task that will read the

statements to print from the OS_printf function.
If this define is commented out OS_printf will
print the text under the context of the caller. The
utility task will use TBD resources from the
above allocated resources.

OS_UTILITYTASK_STACK_SIZE The size of the stack for the utility task.
OS_UTILITYTASK_PRIORITY The priority of the utility task.

 12

2.4 Configure one or more OSAL Applications

Once the OSAL is configured and ready to build, a OSAL application can be configured in the build
directory. Multiple OSAL applications can be created in this directory. The application source code can
come from the src/apps directory, or the applications can be contained completely within the build
directory. The OSAL source distribution has a set of test and example applications in the src/apps directory
and a set of corresponding application directories and makefiles in build directory.

2.4.1 Configure a sample application in the build directory

The following show the files needed for a sample OSAL application in the build directory.

Sample OSAL Applications and the associated files
File Description
build/example1 Directory for the included OSAL example

Application.
build/example1/Makefile Makefile for the example OSAL app. Because

the source is in the src/apps/example1 directory,
there is no need to include it here. The Makefile
will find it using the OSAL_SRC environment
variable. The source could be copied here in
order to customize it.

build/new_osal_app Directory for a new OSAL application.
build/new_osal_app/Makefile Makefile for a new OSAL application.
build/new_osal_app/new_osal_app.c Source file for the new OSAL application.
build/new_osal_app/new_osal_app.h Header file for the new OSAL application.

The Application Makefiles have a specific format, so it is best to copy one of the application Makefiles
from the build directory, such as build/example1.

2.4.2 Configure the application’s main entry point

The OSAL development environment provides the main entry point/startup code for the Application. This
code is located in the src/arch/<cpu-arch>/<platform>/<os>/bsp directory. The startup code will call the
Application’s entry point which is named: void OS_Application_Startup(void)

2.5 Build the OSAL core and Applications

Once the OSAL Core and Applications are set up in a build directory, everything can be compiled. The
OSAL Core or any of the Applications can be built from individual make files, or they can be built from the
top-level Makefile in the build directory.

Build Commands
Shell command Description
$ cd build Change to the build directory.
$ make Build the OSAL Core, and all Applications
$ make clean Clean the OSAL Core, and all Applications

$ cd core; make Build the OSAL Core files only.
$ cd example1; make Build the example1 Application only. NOTE: The OSAL Files have

 13

to be compiled in order for the Application to link.
$ make depend Recalculate the dependencies on the OSAL Core files and apps

Once the OSAL Applications are built, they are ready to load and execute on the target. The filename of the
executable is dependent on the OS it is built for.

OSAL Application executable name
Target Operating System Application executable

name
Notes

vxWorks 6.x dynamic link example1.elf The vxWorks PowerPC platforms use a
dynamically loaded object without the
kernel.

Linux example1.bin
Mac OS X example1.bin
Windows/Cygwin example1.bin
Rtems/Coldfire example1.nxe This is a static linked executable, linked

with the RTEMS kernel and BSP.

 14

2.6 Load and Run the OSAL Applications

• Depending on the Target, it is usually straightforward to run an OSAL Application on a target
platform. On desktop platforms, it is just a matter of running the executable program. On vxWorks, the
example programs are loadable modules.

2.6.1 Load the OSAL Application Executable on the Target

On desktop targets the cFE Core can be run from the directory where it was compiled. On embedded
targets, the Application has to be loaded into a remote file system, or booted over the network. On the
vxWorks PowerPC targets, the Application can be loaded into the EEPROM or Flash disk after the
vxWorks kernel is booted. On RTEMS targets, the Application can be loaded using the CEXP dynamic
loader or it can be linked in with an RTEMS Binary. See the target specific sections for details on each
platform.

2.6.2 Setup the Target File Systems

Because the OSAL runs on many different platforms, it must be able to deal with different file system types
and different paths. The OSAL accomplishes this by using a file system abstraction. The abstracted OSAL
file system is similar to a UNIX file system, where the root directory starts with “/” and all disks are
mounted on directory trees. For example:

• /ram0/apps/  RAM disk 0, apps subdirectory
• /ram1/data/  RAM disk 1, data subdirectory
• /hd0/tables/  Hard Disk 0, tables subdirectory

Using this abstraction, a file “datafile1.dat” on RAM disk 1 might be accessed from the OSAL by using the
path “/ram1/data/datafile1.dat”. Using the host vxWorks tools, the path to the same file would be:
“RAM:0/data/myfile.dat”. If the OSAL is running on a Linux development workstation, the file might be
located at: “/tmp/ramdev1/data/myfile.dat”. The important part is that the OSAL Application can access the
files using a generic path, allowing the software to remain portable.

There are a few ways to map these host file systems to OSAL file systems:

• Map existing target file systems to a OSAL path. This is one of the most common ways to map
the Non-Volatile disk to the OSAL. The OSAL relies on the target OS to create/mount a file
system and it simply is given a mapping to the disk to allow the OSAL to access it.

• Create EEPROM/Flash/ATA File systems. The OSAL has the ability on some targets to format
or initialize a EEPROM or ATA disk device. This is less commonly used.

• Create RAM File Systems. The OSAL can create RAM disks on the vxWorks targets. The OSAL
will create or re-initialize the RAM disk for the vxWorks targets.

 15

The following table shows examples of these file system mappings on various hosts:

OSAL File system mapping
Target Operating
system

cFE File system path Target OS File
system path

Notes

vxWorks 6.x /ram

RAM:0/ Most vxWorks targets

 /cf CF:0/ or CF:1/ MCP750
 /cf EEP:0/ RAD750 target
Linux /ram /tmp/ramdev0 Multiple users on the

same development
machine should remap
this to use a local
directory.

 /cf /tmp/eedev0
Mac OS X /ram /tmp/ramdev0 Multiple users on the

same development
machine should remap
this to use a local
directory.

 /cf /tmp/eedev0
Windows/Cygwin /ram /tmp/ramdev0 On Cygwin, the

directory is a Cygwin
shell directory.
/tmp/ramdev0 will
probably map to:
C:\cygwin\tmp\ramdev0

 /cf /tmp/eedev0 C:\cygwin\tmp\eedev0

2.6.3 Start the OSAL Application on the Target

Starting an OSAL Application is a highly target dependant activity. The following table gives examples of
how to start an Application on various platforms. For full details see the notes for each section.

How to start an OSAL Application on Various Target Systems:
“Target” operating system How to start the cFE
RTEMS Loaded through GDB/BDM using a shell script: “debug.sh”
vxWorks 6.2 / RAD750 Started from the vxWorks Target Shell commands:

Vx> ld < example1.elf
Vx> OS_BSPMain

Linux Start directly from the linux shell:
$./example1.bin

Mac OS X Start directly from the OS X shell:
$./example1.bin

Windows/Cygwin Start directly from the Cygwin shell:
$./example1.bin

 16

Target Specific Instructions
This section provides details on how to load and run each of the supported OSAL configurations.

2.7 Generic PPC / vxWorks 6.4 Platform:

The Generic PPC applications will work on both the Motorola MCP750 and the BAE RAD750 running
vxWorks 6.4. On this platform, the OSAL Applications are built as dynamic loadable vxWorks modules,
rather than being linked to the vxWorks kernel/BSP. The OSAL Applications are loaded into the compact
flash disk on the MCP750, so it can be started from a vxWorks shell or startup script after the kernel comes
up.

2.7.1 OSAL Configuration for the Generic PPC / VxWorks 6.4

cfe-config.mak Settings
Prolog.mak variable Required selection Notes
HWARCH PPC
PLATFORM genppc
OS vxworks6
BSP vxworks6.4

2.7.2 File System Mappings on the MCP750 PPC Board

The cFE uses the following file system mappings for the MCP750 PPC Board. The file system mappings
are defined in the bsp_voltab.c file in the src/arch/ppc/genppc/vxworks6.4/bsp directory:

OSAL File System Mappings
OSAL
“device”

File System Type OSAL Path Host Path Notes

/ramdev0 Real RAM Disk (
vxWorks)

/ram RAM:0/

/eedev0 File System Mapped
(FS_BASED)

/cf eep:0/ This is the Compact Flash drive on the
MCP750

/ramdev1 –
/ramdev5

Real RAM Disk N/A N/A Unused table entries for applications to
create new RAM disks

/ssedev0 -
/ssrdev2

File System Mapped
(FS_BASED)

N/A /ssr:0/SSR1
-
/ssr:0/SSR3

Unused table entries for applications to
map Hard Disk device directories to
“pseudo” SSR file systems.

2.7.3 How to run the OSAL Applications on the MCP750 or RAD750

1. Load the kernel. The custom vxWorks kernel is loaded into the MCP750 via TFTP. We use a vxWorks
boot image (Rather than the Motorola boot monitor/loader) to boot the MCP750 board, TFTP the “real”
kernel to RAM, and execute it. This vxWorks boot image also sets the network settings for the “real”
kernel image. On our OSAL/cFE development system, we keep the loadable vxWorks kernel image in a
TFTP directory on the development workstation. So the vxWorks kernel image goes in
/tftpboot/cpu1/cfecpu1.st. ($ cp /opt/workspace/mcp750image/default/vxWorks
/tftpboot/cpu1/cfecpu1.st)

 17

2. Copy the “example1.elf” (or other executable name) loadable module into the non-volatile disk. On the
MCP750, this is done simply by FTPing the example1.elf file to the target:
$ ftp 192.168.1.4
 ftp> username: target
 ftp> password: password
 ftp> cd “CF:0”
ftp> binary
ftp> put example1.elf

3. Load the example Application in the vxWorks shell:
vx> cd “CF:0”
vx> ld < example1.elf

4. Run the example Application in the vxWorks shell:
vx> OS_BSPMain
(The entry point for the examples and test programs is always OS_BSPMain)

 18

2.8 Axiom M5235 BCC / RTEMS 4.7:

The OSAL supports the Axiom 5235 BCC single board computer with an RTEMS 4.7 board support
package. The tests and examples are built as static RTEMS executable programs for the board and can be
loaded using the DBUG monitor or BDM port. The OSAL Makefiles assume the RTEMS 4.7 toolchain is
installed on the host system in /opt/rtems-4.7 and the mcf5235 BSP is used. The files in
arch/coldfire/mcf5235/rtems/make can be modified for a different environment.

2.8.1 OSAL Configuration for the Axiom M5235 BCC / RTEMS 4.7

cfe-config.mak Settings
Prolog.mak variable Required selection Notes
HWARCH coldfire
PLATFORM mcf5235
OS rtems
BSP rtems

2.8.2 File System Mappings on the Axiom M5235 BCC / RTEMS 4.7

The cFE uses the following file system mappings for the M5235 BCC Board with RTEMS. The file system
mappings are defined in the bsp_voltab.c file in the src/arch/coldfire/mcf5235/rtems/bsp directory:

OSAL File System Mappings
OSAL
“device”

File System Type OSAL Path Host Path Notes

/ramdev0 / / Mapped to the IMFS root directory
/eedev0 File System Mapped

(FS_BASED)
/cf / Mapped to the IMFS root directory

/ramdev1 –
/ramdev5

unused N/A N/A Unused table entries for applications to
create new RAM disks. RTEMS does
not currently have support for creating
new RAM disks.

/ssedev0 -
/ssrdev2

File System Mapped
(FS_BASED)

N/A /ssr:0/SSR1
-
/ssr:0/SSR3

Unused table entries for applications to
map Hard Disk device directories to
“pseudo” SSR file systems.

2.8.3 How to run the OSAL Applications on the Axiom M5235 BCC with RTEMS 4.7

When the example application and test programs are all built as static executables for the M5235BCC
board. The example programs can be loaded in the following ways:

• Using the BDM port through the GNU debugger. If the board is connected to the host PC with a
BDM debugger cable, then the example programs can be loaded and run from there. For our
environment we use the GNU Debugger with BDM Tools patches to allow GDB to talk directly to
the BDM interface. The BDM tools project is at: http://bdmtools.sourceforge.net . There are
support files included in src/arch/coldfire/mcf5235/rtems/bsp/rtems-supoort to help with loading
and running via GDB/BDM.

• Using the BDM port to load the example in the Flash memory on the board. Using the bdmtools
“bdmflash” program or another program such as CFFlasher for Windows, you could burn a flash
version of the examples and boot the board directly. To do this, you must set the jumper on the

 19

board to disable the DBUG monitor and you must use the correct linker script in RTEMS to target
the application in Flash instead of RAM.

• Using the UART port and the DBUG monitor. The DBUG monitor on the board can be used to
load a program into RAM.

• Using TFTP and the DBUG monitor. The sample applications can be transferred over the network
to the board using the DBUG monitor.

It is a good idea to get the board working with the standard RTEMS demos before building and loading the
OSAL Applications. Once the “hello world” RTEMS demo can be built, loaded and executed, you will
have no problem loading the OSAL Applications.

 20

2.9 Macintosh / OS X Platform:

2.9.1 OSAL Configuration for the Macintosh / OS X Platform

Prolog.mak Settings
Prolog.mak variable Required selection Notes
HWARCH PPC / x86 Both PPC and x86

are supported.
PLATFORM mac
OS osx
BSP osx

Additional cFE Core configuration notes:

2.9.2 How to Run the cFE on the Macintosh / OS X Platform

1. To run an OSAL Application, simply execute the binary from a shell prompt:

build/example1]$./example1.bin

 21

2.10 PC / Linux Platform

2.10.1 OSAL Configuration for the PC / Linux Platform

Prolog.mak Settings
Prolog.mak variable Required selection Notes
HWARCH x86
PLATFORM pc
OS linux
BSP linux

Additional cFE Core configuration notes:

2.10.2 How to Run the cFE on the PC / Linux Platform

1. To run an OSAL Application, simply execute the binary from a shell prompt:

build/example1]$./example1.bin

 22

2.11 PC / Cygwin-Windows Platform

2.11.1 OSAL Configuration for the PC / Cygwin-Windows Platform

Prolog.mak Settings
Prolog.mak variable Required selection Notes
HWARCH x86
PLATFORM pc
OS linux The Linux OSAL port is used for cygwin.

Cygwin provides the POSIX APIs needed
for the OSAL.

BSP linux

Additional cFE Core configuration notes:

2.11.2 How to Run the cFE on the PC / Cygwin Platform

1. To run an OSAL Application, simply execute the binary from a shell prompt:

build/example1]$./example1.bin

